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Motivation

Recent trends in deep learning have shown how the joint scaling of model size and number of
training samples produces ever-increasing performances that follow a power law predictably [1–3].
These scaling laws have been extended to study how dataset size and model parameters should be
traded under a fixed computational budget [2], and their predictions are arguably one of the core
ingredients behind the design choices and success of modern large language models (LLMs) [4, 2].
With regard to model size, there is evidence that the benefits of scaling up the architecture apply
transversally across several machine learning applications beyond LLMs [5–8], including computer
vision [9, 10], continual learning [11], and scientific applications [12–14].

New Challenges at Scale. Despite the remarkable achievements, with greater deep learning
systems come new and greater challenges. First, there are observed training instabilities at scale,
such as unexpected loss spikes that require resuming the model’s training from an earlier check-
point [7], the emergence of large outliers features that prevents low-precision quantization [15, 16],
and the entropy collapse of Transformers’[17] attention heads [18]. Second, establishing the opti-
mal hyperparameters. In complex deep learning systems, the number of hyperparameters is large,
including the learning rate, momentum, learning rate schedules. The search space is too large
to allow for grid search, and it becomes economically prohibitive with increasing model sizes and
training time. In fact, a survey performed at NeurIPS 2022 showed that more than half of the
researchers uses less than 25 tuning trials [19]. At large scale, tuning is largely not performed,
with the hope that the hyperparameters will transfer from small to large models [2, 20, 21, 10].
Finally, a third challenge comes with choosing how to increase model size. In deep learning, this
choice consists in increasing either the width or the depth of the model. However, there remains a
limited understanding of how to find depth and width trade-offs to maximize training speed [10, 22].

My research objective is to build the foundations for scaling up deep learning, with the aim of
improving architecture design and solving these new challenges that come with larger scale. To
achieve that, I intend to contribute to the theory of scaling limits for neural networks, where model’s
size (width, depth) and the sample size are taken to infinity.

Theoretical Foundations for Science of Scaling

Why scaling limits? Studying the asymptotic limit has a twofold potential. Firstly, the limiting
behaviour of the system is often mathematically more tractable than at finite size. This has the
potential to study training and generalization of neural networks through its simplified limit [23–26],
and understand complex state-of-the-art architectures [27–30]. Secondly, through scaling limits we
might ensure the existence of a limit with desirable properties (e.g. non vanishing gradients) [31].
Satisfying these desiderata might lead to architectural modifications, or to the prescription of how
optimization components (e.g. the learning rate) should scale with the scaling quantities [32–35].
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Literature Review. Existing theories for neural network’s scaling limits mainly focus on the
infinite width limit, either in the lazy regime [36–43] or rich/feature learning regime [44–47]. This
class of limits relies on the central limit theorem and the law of large numbers to establish con-
centration to deterministic quantities of the kernels involved [46]. However, they generally treat
depth as constant [48], thus they have limitations in modeling deep neural networks [49, 50, 34].
A theoretical characterization of the infinite depth-and-width limit has been mainly performed at
initialization [49, 51–53], and in special cases during training [54, 33]. Depth scaling has also been
studied in signal propagation in random networks [55–57], highlighting the roles of the activation
function [57–60, 31] and the initialization [61] in mitigating signal degeneracies. However, the joint
scaling of dataset size, width and depth has been less studied [62]. Finally, the joint dataset size
and width limit in the realm of kernels or linear models has been explored in a number of founda-
tional works [63, 64, 3, 65–68], and in few cases in the feature learning regime, after one step of
training [69, 70].

Research achievements

Theory: Infinite Width-and-Depth limits. In Noci et al. [49] we use hypergeometric func-
tions [71] to characterize the distribution at initialization of a ReLU network’s output at any finite
width and depth. We also devise its joint width-and-depth limit, and show how it retains the com-
plex characteristics of finite deep networks that would be lost in the infinite width limit. In the joint
limit, the depth-to-width ratio becomes central, controlling the amount of deviation from Gaus-
sianity due to large depth [51–53]. In Noci et al. [35] we devise the first infinite width-and-depth
model for the Transformer architecture using the neural covariance SDE framework [34], where the
infinitesimal modification of the representations in depth can be described with stochastic differ-
ential equations in the joint limit. Finally, there is an alternative parametrization that introduces
residual branches adequately scaled with the depth of the network [32], where the depth and width
limits in fact commute [72]. In Bordelon et al. [54] (similarly, in current work [33]) we show that
the initialization and training dynamics of depth-scaled residual networks can be characterized in
the infinite width-and-depth limit.

Practical Consequences for Architecture Design. The existence of a well-defined scaling
limit for the architecture often provides guidance on architectural and optimization design. In Noci
et al. [73] we show how at large depth Transformers may enter a pathological regime, namely the
rank collapse of the representations [60], where the representations of different inputs perfectly
align at large depth. This hinders trainability by causing vanishing gradients [73]. In Noci et al.
[35] we illustrate how an infinite width-and-depth transformer without these pathologies can be
designed by making the attention function close to linear in a precise width/depth-dependent way.
The Transformer’s attention mechanism is modified by centering the Softmax output at identity,
and scaling the Softmax logits by a width-dependent temperature parameter. We also provide
experimental evidence showing how a Transformer with these modifications can be trained at large
depth with comparable performances to widely adopted Transformers without presenting vanishing
gradients, or the well-known instability of entropy collapse [74, 18].

Hyperparameter Transfer. Another practical consequence of the theory of scaling limits is pre-
sented in Bordelon et al. [54]: we show that when combined with the feature learning parametriza-
tion of µP [21, 33], depth-scaled residual networks exhibit the empirical phenomenon of hyper-
parameter transfer (parametrization that we call

√
depth-µP). There, we prescribe how certain
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optimal hyperparameters, such as the learning rate, should be scaled from small to large models,
thus avoiding expensive hyperparameter tuning. The transfer property holds for various hyper-
parameters, including momentum, regularization strength and cosine learning rate schedule, and
various architectures, including ResNets with normalization layers and Vision Transformers. Be-
yond hyperparameter transfer, our parametrization gives a consistent improvement in performance
with increasing width and depth, which is not the case for other unstable or kernel parametrizations.
Finally, in Noci et al. [75], the phenomenon of hyperparameter transfer is examined by analyzing
the loss landscape during training as model’s width and depth increase. The study highlights how
certain properties, such as sharpness (the largest eigenvalue of the loss Hessian), remain consistent
across scales. Under the appropriate parametrization, the sharpness dynamics are shown to be
largely independent of width, approaching the edge of stability threshold [76]. This provides strong
evidence for an optimization-based explanation of why learning rate transfer works effectively.

Other Directions I have also contributed in the field of Bayesian Neural networks [77, 78],
ensembling [79], Transformer’s inference and the pheonomenon of outlier features [80, 81]. The full
list of publications can be found in the CV or Google Scholar.

Future Directions

I aim to advance the foundations of large-scale neural networks, focusing on training dynamics and
generalization in the joint limit of dataset size, width, and depth. My goal is to develop a unified
theory that incorporates widely used architectural components, such as attention mechanisms and
residual connections, while also exploring empirical applications that emerge during this research.
To achieve that, I outline some intermediate research goals and possible applications:

Feature Learning in the Joint Limit. So far the depth-and-width limit has been characterized
in the commutative setting where the limits can be taken sequentially, i.e. in neural networks with
depth-scaled residual connections [72, 33, 54] (

√
depth-µP). I plan to study training dynamics

and learning rate parametrization in the joint (non-commutative) limit, where also the activation
function needs to be parametrized in terms of width and depth [34, 35]. These results would be
valuable on their own; for instance, this scaling might enable hyperparameter transfer across width
and depth, and would thus provide an alternative scaling as opposed to

√
depth-µP.

Which parametrization is better? In the presence of several different limits with different
properties, it is unclear which would make more efficient use of parameters and data. Thus, I plan
to classify the various scaling limits (e.g.

√
depth-µP versus joint non-commutative limit) using

scaling laws, that allow to make predictions on the model’s performances. This classification would
give a precise prescription as to which scaling strategy should be adopted.

Joint Dataset Size, Depth and Width limit. Scaling laws predict an optimal trade-off be-
tween the number of parameters (depth and width) and data set size. When the width is much
larger than the sample size, the model converges to the limit at a given rate independent of it [3].
However, the interesting power-law scaling of the loss happens in the scaling regime where dataset
size and width are of the same order [1, 3, 82]. Explaining and improving the sample efficiency of
deep neural networks thus requires understanding the joint dataset size, depth and width scaling
limit. Establishing this limit in the feature learning regime would open several possibilities, such
as (1) studying asymptotic generalization curves in a model that faithfully represents finite neural
networks, and (2) providing a prescription for hyperparameter transfer when the data is also a
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scaling quantity. To this end, there are tools that could leveraged, such as approximate message
passing to study multiple gradient steps [64, 83] and tools from random matrix theory [84], such as
Dyson Brownian motion [85] and spiked covariance models [86], to understand the large dimensional
kernels that are involved in the dynamics.

Scaling Laws and Architecture Design It is plausible that scaling laws of performances are
more reliable under a parametrization that has a well-defined feature learning limit. I intend to test
how reliable the scaling exponents with current architectures are. To achieve this, I plan to examine
the empirical scaling behavior of current architectures, under various parametrizations, including
those derived from the proposed research plan, either in the fixed budget or compute optimal setting
[2]. Additionally, I aim to integrate theoretical insights from the joint limit framework to propose
modifications to activations functions [35], and study optimal depth-width trade-offs. The overall
goal here is to converge on a parametrization for the deep learning system (i.e. architecture and
optimizer) that can be used for optimal pretraining, both for language and multimodal models.
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