Lorenzo Noci

Ph.D candidate in Deep Learning at ETH Zurich

☑ lorenzo.noci@inf.ethz.ch ☐+39 3920855212 У Twitter in LinkedIn ☐ Website ☎ Google Scholar

EDUCATION

Sep. 2021 - June/Sep 2025

Ph.D. in Deep Learning

ETH ZURICH, SWITZERLAND

Supervised by Prof. Thomas Hofmann at the Data Analytics Lab. Currently working on scaling limits of neural networks at large width and depth. Applications: architecture design and hyperparameter transfer.

Sep. 2018 - June 2021

M.Sc. in Data Science

ETH ZURICH, SWITZERLAND

Thesis title: "Understanding Bayesian Neural Networks through the Cold Posterior Effect, the Prior Predictive Distribution and PAC-Bayes Bounds". Average Grade: 5.5/6.0

Oct. 2014 - July 2017

Bachelor in Computer Science and Engineering

POLITECNICO DI MILANO, ITALY

Final mark: 110/110 with honors. Average Grade: 29.22/30

Sep. 2015 - June 2018

Bachelor in Electronic Information Engineering

Tongji University, Shanghai, China

Participated to the double degree project 'Politong' between Politecnico di Milano and Tongji University with fully founded scholarship.

FEATURED PUBLICATIONS

Authors who equally contributed to a publication are marked with a †.

- Blake Bordelon[†], Lorenzo Noci[†], Mufan Bill Li, Boris Hanin, Cengiz Pehlevan "Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit." In *International Conference on Learning Representations (ICLR)*, 2024.
- Lorenzo Noci[†], Chuning Li[†], Mufan Bill Li[†], Bobby He, Thomas Hofmann, Chris Maddison, Daniel M. Roy. "The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit" In Advances in Neural Information Processing Systems (NeurIPS), 2023
- 3. Lorenzo Noci[†], Sotiris Anagnostidis[†], Luca Biggio[†], Antonio Orvieto[†], Sidak Pal Singh[†], and Aurelien Lucchi. "Signal propagation in transformers: Theoretical perspectives and the role of rank collapse." In Advances in Neural Information Processing Systems (NeurIPS), 2022
- (Oral) Gregor Bachmann[†], Lorenzo Noci[†], and Thomas Hofmann. "How Tempering Fixes Data Augmentation in Bayesian Neural Networks." In *International Conference on Machine Learning*, pages 1244–1260. PMLR, 2022
- 5. **(Spotlight)** Lorenzo Noci[†], Gregor Bachmann[†], Kevin Roth[†], Sebastian Nowozin, and Thomas Hofmann. "Precise Characterization of the Prior Predictive Distribution of deep relu networks." In *Advances in Neural Information Processing Systems*, 34, 2021

WORKING EXPERIENCE

Mar. 2020 - Sep. 2020

Research Scientist (Data Science) Intern

Amazon, Luxembourg

I worked in the Operation Research Science Team. My project was **productionalized and adopted across Europe and US**, and focused on adaptive importance sampling for combinatorial optimization in high dimension.

Apr. 2019 - Mar. 2020

Research Assistant - Data Engineer

ETH ZURICH

Worked part time with the Biomedical Informatics (BMI) group at ETH on building efficient data processing pipelines.

Sep. 2017 - Sep. 2018

Data Scientist

BUYINT, Shanghai, China

Worked on extracting features from financial documents, recommending companies for potential acquisition.

AWARDS AND OTHER ACADEMIC ACTIVITY

Sept. 2024 Google PhD Fellowship 2024. Area: Machine Intelligence

Lorenzo Noci Curriculum Vitæ

Mar. 2025 - Jun. 2025

(Incoming) Visiting PhD Supervisor: Prof. Boris Hanin Princeton University, NJ, United States

Aug. 2024 Visiting Research Collaborator Supervisor: Prof. Daniel Roy Vector Institute, Toronto, Canada

Apr. 2024 - Sep. 2025

Visiting Research Collaborator. Host: Antonio Orvieto Max Planck Inst. for Intelligent Systems

TALKS

Dec. 2024 EPFL Pre-NeurIPS Event

Super Consistency of Neural Network Landscapes and Learning Rate Transfer

Aug. 2024 Vector Institute

Hyperparameter Transfer in Wide-and-Deep Neural Networks with Insights from the Loss Landscape

Oct. 2024 Max Planck Institute for Intelligent Systems

The Infinite Depth-and-Width Limit(s) of Neural Networks

Nov. 2023 Institute of Machine Learning, ETH Zurich

The Infinite Depth-and-Width Limit(s) of Neural Networks

Jan. 2023 Google Zurich.

Signal Propagation in Transformers

PUBLICATIONS & PREPRINTS

Authors who equally contributed to a publication are marked with a †.

- Bobby He[†], Lorenzo Noci, Daniele Paliotta, Imanol Schlag, Thomas Hofmann. "Understanding and Minimising Outlier Features in Neural Network Training." In Advances in Neural Information Processing Systems (NeurIPS), 2024.
- Lorenzo Noci[†], Alex Meterez[†], Thomas Hofmann, Antonio Orvieto. "Why do Learning Rates Transfer? Reconciling Optimization and Scaling Limits for Deep Learning." In Advances in Neural Information Processing Systems (NeurIPS), 2024.
- Jacopo Graldi^T, Giulia Lanzillotta, Lorenzo Noci, Benjamin Grewe, Thomas Hofmann. "Exploring the Limits of Feature Learning in Continual Learning" In Continual FoMo Workshop at NeurIPS, 2024.
- Blake Bordelon[†], Lorenzo Noci[†], Mufan Bill Li, Boris Hanin, Cengiz Pehlevan. "Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit." In *International Conference on Learning Representations (ICLR)*, 2024.
- 5. Kai Lion[†], **Lorenzo Noci**, Thomas Hofmann, Gregor Bachmann. "How Good is a Single Basin?" In *Artificial Intelligence and Statistics (AISTATS)*, 2024
- 6. (**Spotlight**) Sotiris Anagnostidis[†], Dario Pavllo, Luca Biggio, **Lorenzo Noci**, Aurelien Lucchi, Thomas Hofmann "Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers". In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023
- 7. Lorenzo Noci[†], Chuning Li[†], Mufan Bill Li[†], Bobby He, Thomas Hofmann, Chris Maddison, Daniel M. Roy. "The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit" In Advances in Neural Information Processing Systems (NeurIPS), 2023
- 8. Gül Sena Altıntaş, Gregor Bachmann, **Lorenzo Noci**, Thomas Hofmann "Disentangling Linear Mode-Connectivity" In *UniReps Workshop at NeurIPS*, 2023
- Sanghwan Kim[†], Lorenzo Noci, Antonio Orvieto, and Thomas Hofmann. "Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks in Continual Learning." In IEEE/CVF Conference on Computer Vision and Pattern Recognition
- 10. Sotiris Anagnostidis[†], Gregor Bachmann[†], **Lorenzo Noci**[†], and Thomas Hofmann. "The curious case of benign memorization." In *International Conference on Learning Representations (ICLR)*, 2023.

Lorenzo Noci Curriculum Vitæ

II. **Lorenzo Noci**[†], Sotiris Anagnostidis[†], Luca Biggio[†], Antonio Orvieto[†], Sidak Pal Singh[†], and Aurelien Lucchi. "Signal propagation in transformers: Theoretical perspectives and the role of rank collapse." In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022

- 12. (Oral) Gregor Bachmann[†], Lorenzo Noci[†], and Thomas Hofmann. "How Tempering Fixes Data Augmentation in Bayesian Neural Networks." In *International Conference on Machine Learning*, pages 1244–1260. PMLR, 2022
- 13. (**Spotlight**) **Lorenzo Noci**[†], Gregor Bachmann[†], Kevin Roth[†], Sebastian Nowozin, and Thomas Hofmann. "Precise Characterization of the Prior Predictive Distribution of deep relu networks." In *Advances in Neural Information Processing Systems*, 34, 2021
- 14. **Lorenzo Noci**[†], Kevin Roth[†], Gregor Bachmann[†], Sebastian Nowozin, and Thomas Hofmann. "Disentangling the roles of curation, data-augmentation and the prior in the cold posterior effect." In *Advances in Neural Information Processing Systems (NeurIPS)*, 34, 2021.
- 15. Mario Arduini[†], Lorenzo Noci[†], Federico Pirovano[†], Ce Zhang, Yash Raj Shrestha, and Bibek Paudel. "Adversarial learning for debiasing knowledge graph embeddings." In Workshop on Mining and Learning with Graphs at KDD.